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"_ BACKGROUND

Manypractical structural design problems that can truly benefit from a formal
optimization procedure typically involve very large numberof degrees of freedom,
design variables, and behavioral constraints which are computationally burdensome.
While this large dimensionality of the analysis-design models presents no significant
computational difficulties from the point of view of achieving an optimum design, it
places real limitations on the economic advantages of using optimization methods as
routine design tools.

As a meansof accommodatingthe minimumweight design of large problems within
reasonable costs, it has been an accepted practice in most structural optimization
computer programs to employ a number of approximations that lead to reducing the
problem dimensions during various phases in the optimization process. Thus, in addi-
tion to reductions in the number of degrees of freedom implied in selecting a particu-
lar finite element analysis model, dimensionality during the design phase may be
reduced further by imposing certain preselected relationships between the design
variables (linking and/or basis reduction), and by temporary deletion of constraints
that are not potentially critical.

In this paper, we examine the results of numerical experiments designed to
illustrate how the minimumweight design, accuracy, and cost can be influenced by
(a) refinement of the finite element analysis model and associated load path problems
and (b) refinement of the design variable linking model. The numerical experiments
range from simple structures where the modelling decisions are relatively obvious and
less costly to the more complex structures where such decisions are less obvious and
more costly. All numerical experiments used in this paper employ the dual formulation
in ACCESS-3computer program (1,2).

Guidelines are suggested for creating analysis and design models that predict a
minimumweight structure with greater accuracy and less cost. These guidelines can be
useful in an interactive optimization environment and in the design of heuristic
rules for the development of knowledge-based expert optimization systems.
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EXPERIMENT i

UNIFORMLY LOADED CANTILEVER BEAM

In the first numerical experiment, we consider the optimum weight dependence on

the number of design variables (D.V.) and degrees of freedom (D.O.F.) for the

cantilever beam of figure i. The properties are: elastic modulus = i0 x 106 ib/in 2,

Poissons's ratio = 0.3, and weight density 0. i Ib/in 3. In the successively refined

design and analysis models shown, the design variables are taken as the bar areas

and shear panel thicknesses.

The design constraints are:

Displacement upper/lower bound = ± 0.3 in. at the free end

Upper and lower bound2on the conbined Von Mises stresses = ± 25000 ib/in 2

Minimum gage = 0. i in for bar area, and 0.01 in. for panel thickness

The bottom model shows the 24-D.V. and 48-D.O.F. combination

20 Ib/in.
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Figure 1
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DEFORMATION-CRITICAL CANTILEVER BEAM

In figure 2 below, the optimum weight (Wopt.) is displayed in figure 2a against

changes in the number of D.V., with the number of D.O.F. held constant, and against

changes in the number of D.O.F. in figure 2b while holding the D.V. constant.

These results suggest the following observations.

. A segment of the bar elements of length _ from the free end was designed

by minimum gage. The distance _ increased with refined D.V. and D.O.F.

models. Stresses were well below their limits throughout.

. A greater number of D°O.F. results in higher optimum weight (more flexible

structure), while a greater number of D.V. results in lower optimum weight.

. In an evolving optimization process, it is expedient to start with the

practically most crude design and analysis models, then refine both models

simultaneously along the dotted line paths (figure 2b), limited by

manufacturability constraints and computational cost. This is much less

expensive than the analysis-driven alternative of starting with a highly

refined analysis model and a crude D.V. model that may be successively

refined.

44.£

43.O

42.0

41.0

40.0

Wopt.

- I

m

I

' II

i

I

BARDESIGNED-I
MIN. GAGE

_12 - D.O.F.

k_ 48 - D.O,F.

\6 - D.O.F.

I I
12 24

DESIGN VARIABLES

(a)

44.(

43.1

42.0

41.0

)(

Wopt.

6- D.V.
×

_%% 12-D.V. _"%%

• "* 48 - D.V. °

I. I I I
48 6 12 24

DEGREES OF FREEDOM

(b)

48

Figure 2

332



STRESS-CRITICAL CANTILEVER BEAM

Stress criticality was enforced by removing the bound on the free end deforma-

tion. From figure 3 below, only the shaded shear panel region of length _ was

stress-critical, with the bar in that region stressed up to %88% of its capacity.

The portion _ from free end was designed by minimum gage. The sizes of the regions

designated by _ and _ were D.V. and D.O.F. dependent. Of course, had the panel been

able to carry only shear, the bar would have been stressed to its fullest.

The same observations (2) and (3) made for the deformation-critical design apply

as well in the stress-critical case to a greater extent. Comparison of figures 2

and 3 reveals greater sensitivity of the stress-critical design (over the deformation-

critical design) to variations in D.V. and D.O.F. model refinements. This is because

stress constraints must be satisfied locally by the linked group, while tip deforma-

tion is satisfied globally by contributions of all D.V. groups.
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OPTIMIZATION COST FOR STRESS-CRITICAL CANTILEVER

The two figures below display the relative cost of optimizing the cantilever

beam as a function of the number of D.V. while holding the number of D.O.F. constant

(figure 4a) and as a function of D.O.F. while holding the number of D.V. constant

(figure 4b). The cost values are normalized to the smallest (2.2 CPU seconds used

for 6 D.O.F. 6 D.V.), and include both analysis and optimization costs. All curves

are for i0 analysis/optimization stages that start with the same initial uniform

design. Thus figure 4 does not reflect any convergence related costs. The following

comments can be made.

lo The relative costs below confirm observation (3) made in connection with

figure 2.

. The total optimization cost includes the analysis cost, which depends upon

the number of D.O.F. in the model, and the optimization cost, which depends

on the number of potentially active constraints and D.V. Gradient computa-

tions, in the present case by the pseudo load method, constitute a large

percentage of the optimization costs. This explains the relative insensi-

tivity of cost for a fixed number of D.V. and variable D.O.F., figure 4b,

over the cost of a fixed number of D.O.F. and variable D.V., figure 4a.
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EXPERIMENT2

LOADINTRODUCTIONIN A FIXED-FIXEDBEAM

In complex geometries it is not always possible nor desirable to use spatially
uniform analysis and/or design models for optimization. Further, the relative degree
of refinement necessary in various regions of the samemodel is frequently not obvious.
Unintended model refinement inaccuracies lead to unbalanced internal loads and
incorrect optimum design. This is illustrated here by the symmetric fixed-flxed beam
carrying a single load at the center. Thus, the obviously correct symmetric analysis
and design models are replaced in the present experiment by the incorrect models of
figure 5.

The initially symmetric analysis and design model is successively refined in the
number of D.O.F. in the right hand region only, while keeping the design model
constant (always with 8-D.V.). The beamproperties are the sameas in the previous
cases.
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FIXED-FIXED BEAM

The results of figure 6 show how the optimum weight prediction is influenced by

incorrect load distribution borne by unbalanced analysis model refinement. Figure 6
suggests the following conclusions.

I. An unbalanced model causes the load to shift toward the stiffer (less

refined) region. Consequently larger model imbalance results in a larger

increase in weight of the less refined region over the more refined one.

In fact, the displacement-critical design exhibited a weight decrease of

the refined region with greater D.O.F. refinements, while the weight of

the less refined region continued to increase. Reactions computed for
the 34-D.O.F. model were:

Displacement-critical; left = 2530. lb., right = 1470. lb.

Stress-critical; left = 2470. lb., right = 1550. lb.

. AS in the previous example, the stress-critical design is more sensitive to

D.O.F. refinement than the displacement-critical design.
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EXPERIMENT 3

4-POINT SUPPORTED RECTANGULAR PLATE

Optimization of the i0 x 12 in., 4-point supported plate of figure 7a is

investigated by varying the number of D.O.F. in the model. Some aspects of the same

plate problem have been addressed in refs. 2 and 3. The external load and material

properties are those of ref. 2. In figure 7b, two models are shown for the symmetric

1/4 plate; a 64-node model (solid lines) with 175 unrestrained D.O.F., and a 225-

node model (broken lines) with 644 unrestrained D.O.F. In both cases, the imposed

constraints include: minimum plate thickness = .02 in., upper and lower bounds on

the out-of-plane displacement = ± .02 in. at the center node and at the exterior

corner node, and maximum allowable Von Mises stress _v = 25,000. psi for all elements.

All elements are triangular plate bending elements linked in 32-D.V. groups as

indicated by underlined numbers in the table in figure 8.
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OPTIMIZATION RESULTS FOR PLATE EXAMPLE

Optimization started with the same initial design of 0.71 in uniform thickness

and 5.282 ib weight for both the 64-node and the 225-node models. After 12

analysis/design stages, the 64-node model converged relatively smoothly to 2.386 ib,

figure 8a, with the displacement at the exterior corner node about 90% critical

and the stresses either below critical or up to 0.3% infeasihle in the "starred"

groups 3, 28, and 30, figure 8b. Optimization for the refined 225-node model proved

to be more difficult. Although the corner node displacement near criticality is

reduced to only 60%, all designs produced by stages 3 through 15 oscillated in stress

infeasibility from a high of _120% to a low of 18.5% at the 15th stage. The move limit

used was 100%. Further iteration stages with 10% move limit did not result in

reducing the infeasible stresses. This indicates that the infeasibility is more

likely to be due to errors in the refined model stress calculations rather than being

due to errors in generation of the approximate dual optimization problem. In such

cases, it may be desirable to use D.V. values of the least infeasible design after

scaling by the infeasibility. In figure 8b, the quantities given in parentheses are

the thicknesses produced by the 15th stage (refined model) after scaling by /_.185.

The corresponding weight is 2.81 lb.
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EXPERIMENT 4

ANTENNA STRUCTURE

The optimization of the antenna structure of figure 9 has been addressed in

refs. 2 and 4. However, attention is focused here on exploring design model re-

finement in an interactive environment. The optimization begins with a 60-D.V.

model, then continues with a 90-D.V. model and finally a 125-D.V. model. All three

models consist of 340 nodes connected by 1149 axial members for the symmetric

half of the antenna under symmetric wind loading of ref. 2. The structures consist

of radial rib trusses RI, R2, ..., R4 and interconnecting hoop trusses CO, CI, ...,

C9. The design constraints are: 33 displacement constraints limiting the Z-deform-

ation at the outer circumference C9 to ±i.0 in., 18 slope constraints along the

rib truss coinciding with the X-axis to limit the slope in the XZ plane to ±.0075,

stress constraints on all members (not to exceed ±25,000. psi), and minimum gage =

0.2 in. 2 on the area of all D.V. groups.
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SUCCESSIVEOPTIMIZATIONOFANTENNA

Several strategies maybe used for a systematic D.V. model refinement of a
complex problem. For example, one may concentrate on refining only those D.V. with
values larger than a certain threshold; i.e., where weight reduction has the highest
potential. Alternatively, one may consider refining all D.V. that are near critical
with respect to either all behavior and side constraints or only a selected set of
these constraints. Of course, any strategy used mayhave to include other problem-
peculiar possibilities, and should be tempered with practical manufacturing varia-
bility limitations. In the present antenna example, refinement from the 60-D.V.
model to the 90-D.V. model is achieved by breaking down all D.V. not at the minimum
gage while keeping the top and bottom membersidentical. The rib horizontals are
excepted. Further refinement from the 90-D.V. model to the 125-D.V. model is accom-
plished by breaking the linking between the top and bottom members. Table 1 gives
the D.V. values resulting from the three successive optimizations. As can be seen,
the refinements allowed for a redistribution of internal loads, and consequently for
redistribution of the structural weight. This is also evident from figure 10a which
shows that the total weight is reduced from 9250. lb. (at the end of the 60-D.V. opti-
mization) to 6614. lb. (at the end of the 125-D.V. optimization). In figure 10b, the
cumulative optimization cost is displayed.
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OPTIMUM (in 2)

Designation 60 D.V. 90 D.V. 125 D.V.

Rib Horizontal Type l

C0-C4 .200 .200 .200

.200

C4-C5 .636 .452 .238

.270

C5-C6 .552 .476 .384

.200

C6-C7 .774 .652 .200

.490

C7-C8 .542 .447 .327

.409

C8-C9 .396 .338 .469

.200

Rib Horizontals Type 2

C6-C7 .483 .483 .483

C7-C8 .486 .485 .483

C8-C9 .514 .500 .536

Rib Horizontals Type 3

C3-C4 .495 .387 .200

.200

C4-C5 .852 .582 .200

.240

C5-C6 .664 .676 .325

.231

C6-C7 .983 .825 ,204

.863

C7-C8 .753 .637 .515

.484

C8-C9 .468 .430 .560

.200

Rib Horizontals Type 4

C0-C4 .532 .2]3 1,761

.2O0

.389 1.892
.200

.452 1.934

.200

.771 2.117

.200

C4-C5 2.352 3,221 .672

3.674

C5-C6 1,245 1.665 .253

1.501

C6-C7 1.321 1.353 .200

1.440

TABLE 1

OPTIMAL CROSS SECTIONAL AREAS FOR ANTENNA

OPTIMUM (in 2) OPTIMUM (in 2)

Designation 60 D.V. 90 D.V. 125 D.V. Designation 60 D.V, 90 D.V. 125 D.V.

Rib Horizontals Type 4 (Cont'd)

C7-C8 .958 .926 .534

.823

C8-C9 .519 .495 .567

.200

Horizontal Diagonals

C3-C4 .623 .495 .200

.200

C5-C6 .410 .534 .359

Rib Diagonals

CO-C] .200 .200 .200

.200 .200

CI-C2 ,200 .200 .200

.252 .200

C2-C3 .300 .200 .200

.498 .200

C3-C4 .252 .200 .200

.200 .200

.548 .200

C4-C5 1.142 .200 .377

.200 .200

2.887 3.292

C5-C6 1.817 .641 .859

1.207 _'_

3.473 2.735

C6-C7 .200 .200 .200

.200 .200

.200 .200

C7-C8 .367 .200 .200

.259 .330

,649 .609

C8-C9 .200 .200 .200

.200 .200

.200 .200

Verticals

CO .200 .200 .200

C1 .200 .200 .200

C2 .200 .200 .200

C3 .200 .200 .200

C4 (R1) 2.575 .200 .200

(R3) .200 .200

(R4) 4.112 3.578

C5 (R1) 2.146 .445 .354

(R3) 1.344 1.087

(R4) 5.200 4.836

Verticals (Cont'd)

C6 .200 .200 .200

C7 (R1) .350 .200 .200

(R3) .246 .275

(R4) .486 .432

C8 .200 .200 .200

C9 .200 .200 .200

Hoop Horizontals

C1 .200 .200 .200

.200

C2 .200 ,200 .200

.200

.200 .219

.200

C3 .500 .583 .200

.306

.200 .200

.200

C4 .507 .337 .200

.200

C5 .200 .284 .200

.434

C6 3.323 2.163 .200

.334

3.296 4.346

4_4!7

C7 .200 .200 .200

.200

C8 .235 ,200 .481

.200

C9 4.348 4.306 5.268

5,348

4,047 .490

.28O

Hoop Diagonals

C1 .200 .200 .200

C2 .200 .200 .200

C3 .200 .200 .200

C4 1,256 .200 ,200

,808 ,300

C5 .326 .200 .200

.977 1.275

C6 .200 .200 .200

C7 .200 .200 .200

C8 .200 .200 .200

C9 .289 .283 .200
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CONCLUSIONS

In the optimization of complex structures, selection of the most suitable analysis
and design models is frequently not obvious. Accuracy and cost are always limiting
and competing factors. Further, design optimization usually is not a one-time process,
but is one that evolves with evolution of the design details.

In the preceding pages, results of numerical experiments were discussed to show
trends that maybe employed in devising cost effective optimization procedures consis-
tent with an evolutionary optimization philosophy, whether it is carried out in the
context of a man-machineinteractive environment or in the context of an automated
expert system. Specifically, the results deal with (i) optimumweight accuracy and
associated cost advantages of starting the optimization process with the practically
most crude D.V. and D.O.F. models, then simultaneously refining both models in subse-
quent optimizations; (2) effect of model imbalance on the resulting optimal weight;
(3) design infeasibility as a typical difficulty in large problems optimization, and
how it maybe dealt with; (4) a criterion for selection of successive D.V. model
refinements.
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